Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Med Case Rep ; 18(1): 137, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38444009

RESUMEN

BACKGROUND: Klippel-Feil syndrome is a rare congenital bone disorder characterized by an abnormal fusion of two or more cervical spine vertebrae. Individuals with Klippel-Feil syndrome exhibit diverse clinical manifestations, including skeletal irregularities, visual and hearing impairments, orofacial anomalies, and anomalies in various internal organs, such as the heart, kidneys, genitourinary system, and nervous system. CASE PRESENTATION: This case report describes a 12-year-old Pashtun female patient who presented with acute bilateral visual loss. The patient had Klippel-Feil syndrome, with the typical clinical triad symptoms of Klippel-Feil syndrome, along with Sprengel's deformity. She also exhibited generalized hypoalgesia, which had previously resulted in widespread burn-related injuries. Upon examination, bilateral optic disc swelling was observed, but intracranial pressure was found to be normal. Extensive investigations yielded normal results, except for hypocalcemia and low vitamin D levels, while parathyroid function remained within the normal range. Visual acuity improved following 2 months of calcium and vitamin D supplementation, suggesting that the visual loss and optic nerve swelling were attributed to hypocalcemia. Given the normal parathyroid function, it is possible that hypocalcemia resulted from low vitamin D levels, which can occur after severe burn scarring. Furthermore, the patient received a provisional diagnosis of congenital insensitivity to pain on the basis of the detailed medical history and the findings of severe and widespread loss of the ability to perceive painful stimuli, as well as impaired temperature sensation. However, due to limitations in genetic testing, confirmation of the congenital insensitivity to pain diagnosis could not be obtained. CONCLUSION: This case highlights a rare presentation of transient binocular vision loss and pain insensitivity in a patient with Klippel-Feil syndrome, emphasizing the importance of considering unusual associations in symptom interpretation.


Asunto(s)
Hipocalcemia , Síndrome de Klippel-Feil , Insensibilidad Congénita al Dolor , Femenino , Humanos , Niño , Síndrome de Klippel-Feil/complicaciones , Síndrome de Klippel-Feil/diagnóstico , Visión Binocular , Dolor , Vértebras Cervicales , Vitamina D
2.
J Biotechnol ; 365: 1-10, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36708999

RESUMEN

Herein, silver and zinc oxide Nanoparticles (NPs) were synthesized by using W. coagulant fruit extract as reducing agent and capping agent. The green synthesized NP with distinct properties were used for novel application against fungal and bacterial pathogen of honey bee (A. mellifera). The UV-spectroscopy confirms the synthesis of silver and zinc oxide NPs at 420 nm and 350 nm respectively. Further, XRD evaluated the monoclinic structure of Ag NPs while ZnO NPs showed wurtzite hexagonalcrystlized structure. Resistant honey bee pathogens such Paenibacilluslarvae, Melissococcus plutonius and Ascosphaera apis were isolated, identified and cultured in vitro to assess the antimicrobial potentials of Ag and ZnO NPs. Additionally, different biomolecules provide access to achieve maximum and stable Ag and ZnO NPs. It was also observed that with increasing the concentration of zinc oxide NPs and sliver NPs, zone of inhibition was also increased. Thus, present findings show that plant extracts can be a useful natural resource to prepare functional nonmaterial for targeted applications especially in the field of apicultural research.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Óxido de Zinc , Abejas , Animales , Zinc/farmacología , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Plata/farmacología , Plata/química , Antiinfecciosos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana
3.
Appl Biochem Biotechnol ; 195(1): 264-282, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36074235

RESUMEN

Physical and chemical methods for production of nanoparticles (NPs) are not only harmful for environment but also toxic for living organism. The present study attempts to synthesize ZnO NPs using the natural plant extract of Fagonia cretica. The phytochemical screening of F. cretica water extract was performed to check the presence of biologically active compounds like alkaloids, tannins, carbohydrates, proteins, phenols, saponins, flavonoids, and steroids. Well-prepared ZnO NPs given sharp absorption peak at 362 were confirmed by UV-visible. XRD analysis showed the ZnO NPs having wurtzite hexagonal structure with crystalline form. TEM analysis endorses flower-shaped ZnO nanoparticles ~ 100-1000 nm. FTIR spectrum suggested the involvement of phenolic groups and amino acids and amide linkages in protein performs as the stabilizing agent in the synthesis of ZnO NPs. The ZnO NPs showed strong antibacterial behavior against two bacterial strains Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. In addition, ZnO NPs exhibited strong antioxidant activity of 79%:85.6%:89.9% at 5 µg/mL:10 µg/mL:5 µg/mL concentration of ZnO NPs respectively. This work indicates that Fagonia is considered to be appropriate and promising candidate for extending the innovative applications in the field of medicine and industry and also helpful and useful to the scientific communities.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Óxido de Zinc/química , Nanopartículas/química , Bacterias/metabolismo , Bacterias Gramnegativas , Bacterias Grampositivas , Extractos Vegetales/química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier
4.
Ind Eng Chem Res ; 60(30): 11346-11356, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34475634

RESUMEN

An increase in temperature of up to 2 °C occurs when the amount of CO2 reaches a range of 450 ppm. The permanent use of mineral oil is closely related to CO2 emissions. Maintaining the sustainability of fossil fuels and eliminating and reducing CO2 emissions is possible through carbon capture and storage (CCS) processes. One of the best ways to maintain CCS is hydrate-based gas separation. Selected type T1-5 (0.01 mol % sodium dodecyl sulphate (SDS) + 5.60 mol % tetrahydrofuran (THF), with the help of this silica gel promotion was strongly stimulated. A pressure of 36.5 bar of CO2 is needed in H2O to investigate the CO2 hydrate formation. Therefore, ethylene glycol monoethyl ether (EGME at 0.10 mol %) along with SDS (0.01 mol %) labeled as T1A-2 was used as an alternative to THF at the comparable working parameters in which CO2 uptake of 5.45 mmol of CO2/g of H2O was obtained. Additionally, it was found that with an increase in tetra-n-butyl ammonium bromide (TBAB) supplementation of CO2, the hydrate and operating capacity of the process increased. When the bed height was reduced from 3 cm to 2 cm with 0.1 mol % TBAB and 0.01% SDS (labelled as T3-2) in fixed bed reactor (FBR), the outcomes demonstrated a slight expansion in gas supply to 1.54 mmol of CO2/g of H2O at working states of 283 K and 70 bar. The gas selectivity experiment by using the high-pressure volume analysis through hydrate formation was performed in which the highest CO2 uptake for the employment of silica contacts with water in fuel gas mixture was observed in the non-IGCC conditions. Thus, two types of reactor configurations are being proposed for changing the process from batch to continuous with the employment of macroporous silica contacts with new consolidated promoters to improve the formation of CO2 hydrate in the IGCC conditions. Later, much work should be possible on this with an assortment of promoters and specific performance parameters. It was reported in previous work that the repeatability of equilibrium moisture content and gas uptake attained for the sample prepared by the highest rates of stirring was the greatest with the CIs of ±0.34 wt % and ±0.19 mmol of CO2/g of H2O respectively. This was due to the amount of water occluded inside silica gel pores was not an issue or in other words, vigorous stirring increased the spreadability. The variation of pore size to improve the process can be considered for future work.

5.
Food Funct ; 12(19): 9007-9017, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34382988

RESUMEN

The biofilms produced by the aggregation of bacterial colonies are among the major obstacles of host immune system monitoring and antimicrobial treatment. Herein, we report PEGylated dihydromyricetin-loaded liposomes coated with tea saponin grafted on chitosan (TS/CTS@DMY-lips) as an efficient cationic antibacterial agent against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which is supported by their deep penetration into bacterial biofilms and broad pH-stable release performance of dihydromyricetin (DMY). The successful construction of the drug delivery system relied on tea saponin grafted on chitosan (TS/CTS) via formatted ester bonds or amido bonds as a polyelectrolyte layer of PEGylated dihydromyricetin-loaded liposomes (DMY lips), which achieved controlled release of DMY in weak acidic and neutral physiological environments. The micromorphology of TS/CTS@DMY-lips was observed to resemble dendritic cells with an average size of 266.49 nm, and they had excellent encapsulation efficiency (41.93%), water-solubility and stability in aqueous solution. Besides, TS/CTS@DMY-lips displayed effective destruction of bacterial energy metabolism and cytoplasmic membranes, resulting in the deformation of the cell wall and leaking of cytoplasmic constituents. Compared to free DMY, DMY lips and chitosan-coated dihydromyricetin liposomes (CTS@DMY-lips), TS/CTS@DMY-lips has more thorough killing activity against E. coli and S. aureus, which is related to its excellent sustained release performance of DMY under the protection of the TS/CTS coating.


Asunto(s)
Antibacterianos/farmacología , Saponinas/farmacología , , Antibacterianos/química , Composición de Medicamentos , Metabolismo Energético , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Flavonoles/química , Humanos , Liposomas/química , Pruebas de Sensibilidad Microbiana , Respiración , Saponinas/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
6.
Leuk Res ; 104: 106554, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684680

RESUMEN

Lymphoma is a heterogeneous group of malignancies, which comprises 4.2 % of all new cancer cases and 3.3 % of all cancer deaths in 2019, globally. The dysregulation of immune system, certain bacterial or viral infections, autoimmune diseases, and immune suppression are associated with a high risk of lymphoma. Although several conventional strategies have improved during the past few decades, but their detrimental impacts remain an obstacle to be resolved. However, natural compounds are considered a good option in the treatment of lymphomas because of their easy accessibility, specific mode of action, high biodegradability, and cost-effectiveness. Vegetables, fruits, and beverages are the primary sources of natural active compounds. The present review investigated the activities of different natural medicinal compounds including curcumin, MK615, resveratrol, bromelain, EGCG, and Annonaceous acetogenins to treat lymphomas. Moreover, in vitro and in vivo studies, classification, risk factors, and diagnosis of lymphoma are also discussed in the present review. The accumulated data proposed that natural compounds regulate the signaling pathways at the level of cell proliferation, apoptosis, and cell cycle to exhibit anti-lymphoma activities both in-vivo and in-vitro studies and suggested that these active compounds could be a good therapeutic option in the treatment of different types of lymphomas.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Linfoma , Transducción de Señal/efectos de los fármacos , Humanos , Linfoma/tratamiento farmacológico , Linfoma/metabolismo , Linfoma/patología
7.
Molecules ; 25(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751780

RESUMEN

Withania coagulans contains a complex mixture of various bioactive compounds. In order to reduce the complexity of the plant extract to purify its phytochemical biomolecules, a novel fractionation strategy using different solvent combination ratios was applied to isolate twelve bioactive fractions. These fractions were tested for activity in the biogenic synthesis of cobalt oxide nanoparticles, biofilm and antifungal activities. The results revealed that plant extract with bioactive fractions in 30% ratio for all solvent combinations showed more potent bioreducing power, according to the observed color changes and the appearance of representative absorption peaks at 500-510 nm in the UV-visible spectra which confirm the synthesis of cobalt oxide nanoparticles (Co3O4 NPs). XRD diffraction was used to define the crystal structure, size and phase composition of the products. The fractions obtained using 90% methanol/hexane and 30% methanol/hexane showed more effectiveness against biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus so these fractions could potentially be used to treat bacterial infections. The 90% hexane/H2O fraction showed excellent antifungal activity against Aspergillus niger and Candida albicans, while the 70% methanol/hexane fraction showed good antifungal activity for C. albicans, so these fractions are potentially useful for the treatment of various fungal infections. On the whole it was concluded that fractionation based on effective combinations of methanol/hexane was useful to investigate and study bioactive compounds, and the active compounds from these fractions may be further purified and tested in various clinical trials.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Cobalto/química , Nanopartículas del Metal/química , Óxidos/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Withania/química , Aspergillus niger/efectos de los fármacos , Candida albicans/efectos de los fármacos , Fraccionamiento Químico/métodos , Hexanos/química , Metanol/química , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Solventes/química , Staphylococcus aureus/efectos de los fármacos
8.
J Photochem Photobiol B ; 204: 111784, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31954266

RESUMEN

Present work compares the green synthesis of iron oxide nanorodes (NRs) using Withania coagulans and reduction precipitation based chemical method. UV/Vis confirmed the sharp peak of Iron oxide NRs synthesized by biologically and chemically on 294 and 278 nm respectively. XRD and SEM showed highly crystalline nature of NRs with average size 16 ± 2 nm using Withania extract and less crystalline with amorphous Nanostructure of 18 ± 2 nm by chemical method. FTIR analysis revealed the involvement of active bioreducing and stabilizing biomolecules in Withania coagulans extract for synthesis of NRs. Moreover, EDX analysis indicates 34.91% of Iron oxide formation in biological synthesis whereas 25.8% of iron oxide synthesis in chemical method. The degradation of safranin dye in the presence of Withania coagulans based NRs showed 30% more effectively than chemically synthesized Nanorods which were verified by the gradual decrease in the peak intensity at 553 nm and 550 nm respectively under solar irradiation. Furthermore, Withania coagulans based NRs showed effective Antibacterial activity against S.aureus and P. aeuroginosa as compared to NRs by chemical method. Finally, we conclude that green synthesized NRs are more effective and functionally more efficient than chemically prepared NRs. Therefore, our work will help the researchers to boost the synthesis of nanoparticles via biological at commercial level.


Asunto(s)
Antibacterianos/química , Compuestos Férricos/química , Nanotubos/química , Extractos Vegetales/química , Withania/química , Antibacterianos/farmacología , Catálisis , Tecnología Química Verde , Nanotubos/toxicidad , Fenazinas/química , Fotólisis/efectos de los fármacos , Fotólisis/efectos de la radiación , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Luz Solar , Withania/metabolismo
9.
Nanoscale Adv ; 1(5): 1707-1713, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134229

RESUMEN

Silver nanoparticles (NPs) were synthesized using an efficient bioreducing agent from Fagonia cretica extract having the advantage of eco-friendliness over chemical and physical methods. The sharp color change and appearance of representative absorption peaks in the UV-visible spectra confirm the quick reduction of the Ag salt and evolution of Ag NPs. Morphological and structural aspects showed that the resulting Ag NPs are highly crystalline with an average size of 16 nm. Furthermore, compositional analysis of the extract confirmed the existence of active bioreducing and stabilizing agents in the Fagonia cretica extract. Furthermore, various concentrations of AgNO3 and the Fagonia cretica extract were employed to obtain a higher yield with better stability of Ag NPs. The resulting Ag NPs showed effective antibacterial activity against Proteus vulgaris, Escherichia coli, and Klebsiella pneumoniae. It is found that the Ag NPs induce maximum production of reactive oxygen species (ROS) in Proteus vulgaris as compared to Escherichia coli and Klebsiella pneumoniae which induce cell toxicity, while ROS production in the presence of Ag NPs is 30% higher than that in the presence of only the plant extract and control in all three bacterial strains. Thus, present findings show that plant extracts can be a useful natural resource to prepare functional nanomaterials for targeted applications especially in the field of biotechnology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA